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ABSTRACT 

Limnological studies were in i t ia ted  in 1981 on Bakewell and Badger lakes 
(a two lake chain) for  the purpose of defining existing rearing conditions 
for  salmon f ry  in order to  apply applicable enhancement techniques. The 
clear  headwater lake, Badger, has a surface area of 205 ha and i s  steep 
sided with a mean depth of 69 m while the organically stained Bakewell Lake 
i s  larger (269 ha) with a mean depth of only 24 m.  B o t h  are 01 igotrophic 
(a1 t h o u g h  Bakewell does show a depression in hypo1 imnetic oxygen a f t e r  
partial  overturn periods), extremely d i lu te ,  softwater lakes with 1 i t t l e  
buffering capacity . Of the primary nutrients : phosphorus, nitrogen, and 
s i l icon only the inorganic nitrogen levels of b o t h  lakes underwent a 
summer period depression within the epilimnion. 

Primary production was low as chlorophyll a concentrations were consistently 
below 0.5 pg L-1 in Badger Lake, and usualiy a t  or below 1 yg L - ~  in Bakewell 
Lake. The zooplankton community of both lakes was dominated by c y c l o p s  
b i c u s p i d a t u s  t h o m a s i  followed by ~ o l o p e d i u m  q i b b e r u m ,  B o s m i n a  lonqirostr is  
and D a p h n i a  l o n q e r i m u s .  The species composition and body-size of the 
zooplankton indicate a low level of f ish feeding pressure in Badger Lake, 
and an intermediate level in Bakewell Lake. Thus, both lakes have the 
a b i l i t y  to  rear additional salmonid f ry ,  b u t  because of the character is t ics  
of the zooplankton community successful lake rearing may be confined t o  
sockeye, and to  a lesser  extent,  t o  coho salmon. 



INTRODUCTION 

The evaluation of lake systems f o r  t o  t h e i r  ex i s t ing  potential  a s  rearing 
areas f o r  juvenile salmonids has matured in recent  years t o  include deta i led  
1 imnol ogical s tudies .  Such invest igat ions  a r e  intended t o  quantify the 
basis  f o r  f i s h  production in freshwater lakes pa r t i cu la r ly  in regard t o  the  
forage (zooplankton) component. Zooplankters a r e  extremely important food 
items f o r  juvenile salmonids especia l ly  f o r  the  pelagic feeding sockeye 
salmon ( 0 .  nerka) f ry .  In tu rn ,  other s tud ies  center  on the fac to rs  within 
the lake which a f f e c t  zooplankton production including nu t r i en t  levels  and 
algal  standing crop. I t  i s  the ultimate coupling of the physical f ac to rs  of 
a lake (e.g.  l i g h t  penetrat ion,  temperature regimes e t c . )  with the  nu t r i en t  
l eve l s  t h a t  ul t imately r e s u l t  in the production of f i sh  food organisms. 
Our purpose i s  t o  describe trophic level couplings as they r e l a t e  t o  the 
capab i l i ty  of Bakewell and Badger Lakes t o  r e a r  juvenile salmonids. 

Study S i t e  Description 

The Bakewell system, (1,172 t o t a l  lake ac r e s ) ,  comprising Bakewell and 
Badger Lakes i s  located southeast  of Ketchikan in the Misty Fjords National 
Momument, and dra ins  i n to  Smeaton Bay off  of Behm Canal l. Bakewell (lower 
lake)  and Badger (upper lake) make up a chain with Bakewell being the l a rger  
of the  two (Figures 1 and 2 ) .  Bakewell i s  nearly 4.5 miles long, but only 
0.25 mi l e s  wide with a surface area of 665 acres (2.8 x 10'6 m 2 ) ,  and a 
maximum depth of 59 m. In con t ras t ,  Badger Lake i s  2.1 mi es long and 
0.5 miles wide with a surface area of 507 acres (2.05 x 10'; mz), and a 
maximum depth of 146 in. T h u s ,  Badger Lake i s  a  c l e a r ,  very deep system 
compared t o  the s l i g h t l y  l a rger ,  organically s ta ined and shallower 
Bakewell Lake. 

METHODS 

Transportation t o  and from both lakes was provided by float-equipped 
a i r c r a f t .  Limnological samples were col lec ted from f l o a t  plane pontoons 
during a l l  surveys t h a t  were conducted between May and October 1981, and 
between May and August 1982. The frequency of sampling was designed t o  
character ize  the lake a t  4 c r i t i c a l  periods: spring overturn,  ea r ly  and 
l a t e  summer, and f i n a l l y  the  f a l l  overturn. The lake was sampled f o r  algal  
nu t r i en t s  (n i t rogen,  phosphorus, s i l i con  and carbon) as well as other water 
qua1 i  t y  parameters (see  A1 as ka Department of Fish and Game, Lake Fert i  1 i  za t i  on 
Guide1 ines)  from both the epi 1 imnetic and mid-hypo1 imnetic zones. Water 
samples from mu1 t i p l e  ( 4 )  cas t s  with a non-metal i c  Van Dorn sampler were 
pooled, s tored in 8-10 1 i  t e r  trans1 uscent carboys, cooled, and immediately 
transported in  light-proof containers t o  Ketchikan f o r  f i l t e r i n g  and preser- 
vation. Subsequent f i l t e r e d  and unf i l tered water samples were stored e i t h e r  
ref r igera ted o r  frozen in acid cleaned pre-rinsed polybott les.  The pre- 
processed water samples were then sent  t o  the Soldotna Limnology laboratory 
f o r  analys is .  

lBadger formally drained d i r ec t l y  in to  Boca de Quadra Bay of f  Behm Canal. 



BAKEWELL L A K E  
BATHYMETRIC M A P  

Volume: 58.83 x 1 0 ' ~  m 3 
Area: 2.82 x 1 of6 m2 (665 acres)  
Mean Depth: 24 m 
Maximum Depth: 59 m 
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F igu re  1. Bathymetr ic  map o f  
Bakewell Lake 
showing l a k e  
sampl ing S t a t i o n s  
(A and B).  

In let  (Badger Lake) 



All chemical and biological samples were analyzed by methods de ta i l ed  in 
the Alaska Department of Fish and Game limnology manual. In general ,  
f i  1 t e rab le  react ive  phosphorus ( F R P )  was analyzed by the molybdate blue- 
ascorbic acid method of Murphy and Riley (1962) as modified by Eisenreich 
e t  a l .  (1975). Total phosphorus was determined by the FRP procedure a f t e r  
persul fa te  digest ion.  Ni t ra te  and n i t r i t e  were determined as n i t r i t e  
following Stainton e t  a l .  (1977) a f t e r  cadmium reduction of n i t r a t e .  
Ammonium analys is  followed Stainton e t  a1 . (1977) using the  phenol hypochlo- 
r i t e  methodology while s i l i c a  analys is  followed the procedure of Str ickland 
and Parsons (1 972). Inorganic carbon was calculated according t o  Saunders 
e t  a1 . (1962) a f t e r  determining a1 kal i n i t y  by acid t i t r a t i o n  t o  pH 4.5 
using a Corning model 399A spec i f i c  ion meter. 

Par t i  cul a t e  carbon, nitrogen, and phosphorus were estimated d i r e c t l y  from 
f i l t e r e d  seston prepared by drawing 1 t o  2 l i t e r s  of lake water through 
pre-cleaned 4.2 cm GF/F  f i l t e r s .  The f i l t e r s  were stored frozen in 
individually marked plexisl  ides unti 1 analyzed. 

Primary production (a lgal  standing crop) was estimated by chlorophyll a 
(chl a )  analys is  a f t e r  the fluorometric procedure of Str ickland and Parsons 
(197251. We used the  low strength acid addit ion recommended by Reimann (1978) 
t o  est imate phaeophytin. Water samples (1 -2 1 i t e r s )  were f i  1 tered through 
4 .2  cm Whatman GF/F f i l t e r s  t o  which a 1 t o  2 mls of a sa tura ted MgC03 
solut ion were added just p r io r  t o  the completion of f i l t r a t i o n .  The f i l t e r s  
were then stored frozen in p lexis l ides  f o r  l a t e r  anal.ysis. 

Zooplankton were col lec ted from e i t h e r  duplicate bottom t o  surface o r  surface 
t o  50 m ve r t i ca l  tows using a 0.5 m diameter, 153 u mesh conical zooplankton 
net .  The net  was pulled a t  constant lm/second, and washed well before 
removing and then preserving the organisms in 10% netural ized sugar-formalin 
(Haney and Hall 1973). 

Ident i f ica t ion within the enus Daphnia followed Brooks (1957); of the genus 
Bosmina a f t e r  Pennak (1978 3 ; and of the copepods a f t e r  Wilson and Yeatman 
(1 9591, and Harding and Smith (1974). Enumeration consisted of counting 
t r i p l i c a t e  1 ml subsamples taken with a Hansen-Stempel p ipe t t e  in a 1 m1 
Sedgewick-Rafter c e l l .  Size ( length)  of individual zooplankton were 
obtained by counting a t  l e a s t  ten individuals along a t r ansec t  in  each of 
the 1 ml subsamples used in iden t i f i ca t ion  and enumeration. Zooplankton 
were measured t o  the nearest  0.01 mm as described in Edmondson and Winberg 
(1971). 

Bottom prof i l es  were recorded w i t h  a Raytheon fathometer along several lake 
t ransects  and from these depth recordings bathymetric maps were developed. 
Using each map, the area of component depth s t r a t a  were determined with a 
polar  planimeter and lake volume ( V )  was computed by summation of successive 
s t r a t a  a f t e r  Hutchinson (1 957) : 

. . 

Lake Volume = z ?(A1 +A2  +w2) 
i = l  



BADGER L A K E  
BATHYMETRIC MAP 

Volume: 143 x 1 ~ : ~  m3 
Area: 2.05 x 10 mz(507 ac res )  t , 

0 500 1000 Mean Depth: 69.5 m 
Maximum Depth: 146 m Sca le  i n  Meters 
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A 

F igu re  2. Ba thymet r i c  map o f  Badger Lake showing l a k e  sampl ing S t a t i o n  ( A ) .  



n 
Where: c = sum of s t r a t a  volumes i through n .  

i  -1 

A1 = surface area of upper depth s t r a t a  ( m 2 )  

A2  = surface area of lower depth s t r a t a  ( m 2 )  

h = distance between A1 and A2 ( m )  

Lake surface area ( A  ) and drainage area ( A D )  were computed from topographic 
maps using a polar p \ animeter. Lake mean depth ( 2 )  was calculated as:  

r = VIAL 

Where: = lake mean depth (m) 

V = lake volume (.106m3) 

AL = lake surface area (-106m2) 

The mean watershed elevation was determined from a topographic map by 
marking increments a t  250 m (scaled)  in te rva l s  along the shoreline.  For each 
each increment, elevations were recorded a t  distances of 1 km (scaled)  
away from and perpendicular t o  the shore (o r  the 1 imi t of the  watershed 
when t h i s  was (1 km). 

Annual precipi ta t ion was determined from hydrologic maps of long-term 
precipi ta t ion (U.S. Environmental Data Service 1973). Thornwaite c l imat ic  
water balance tabulat ions (Phil1 ips  1976), a s  described by Stockner and 
Shortreed (1 979), were used t o  ca lcu la te  lake evaporation and drainage area 
evapotranspiration. Annual t o t a l  lake outflow ( T L O )  was then calculated 
using the following equations: 

TLO = ( P L  - E L )  ( A L )  + (PDA - E D A )  ( A D A )  

Where: TLO = t o t a l  lake outflow (-106m3) 

PL = annual precipi ta t ion f o r  the lake ( m )  

EL = annual lake evaporation ( m )  

AL = lake surface area (-106m2) 

P D ~  = annual drainage area precipi ta t ion ( m )  

EDA = annual drainage area evapotranspiration ( m )  

ADA = drainage area (-106m2) 



The t h e o r e t i c a l  water  res idence t ime ( T ~ )  was then c a l c u l a t e d  as: 

Tw ( y r )  = V/TLO 

Where: Tw = t h e o r e t i c a l  wa te r  res idence t ime  (years )  

V = t o t a l  l a k e  volume (-106m3) 

TLO = t o t a l  l a k e  o u t f l o w  (-106m3yr) 

The c o l l e c t i o n  o f  phys i ca l  da ta  i nc l uded  t h e  measurement of l a k e  temperatures 
and l i g h t  p e n e t r a t i o n  a t  bo th  S t a t i o n s  A  and B.  Lake temperature p r o f i l e s  
were measured us ing  a  Montedoro-Whitney Mark I V  meter.  These reco rd ings  
were taken a t  1  m increments f rom the  sur face  t o  5  m y  a t  2  m increments from 
6-12 m y  and a t  10 m increments f rom 20-50 m. The a l g a l  l i g h t  compensation 
p o i n t  was de f i ned  as t h e  depth a t  which 1% o f  t h e  subsurface l i g h t  [photo- 
s y n t h e t i c a l l y  a v a i l a b l e  r a d i a t i o n  (400 t o  700 mm)] penetrated,  and was 
measured us ing  a  Pro tomat ic  submersible photometer. Recordings were taken 
a t  severa l  depths between t he  su r f ace  and t h e  compensation depth.  Using 
these data,  t h e  n a t u r a l  l o g a r i t h m  o f  l i g h t  i n t e n s i t y  was p l o t t e d  aga ins t  
depth, and t h e  s lope  of  t h i s  l i n e  was used t o  c a l c u l a t e  t h e  mean 
e x t i n c t i o n  c o e f f i c i e n t .  I n  a d d i t i o n ,  water  t ransparency was es t imated  
us ing  a  20-cm Secchi d i s k .  

RESULTS 

Phys ica l  Features 

The euphot i c  zone o f  Bakewell Lake extends t o  a  l i t t l e  more than 4 meters 
(Table I ) ,  and shows l i t t l e  v a r i a t i o n  w i t h i n  season and between years  as 
l i g h t  pene t ra ted  f rom 5.5 t o  3.5 m. The y e l l o w  organ ic  s t a i n  decreases t h e  
p e n e t r a t i o n  of 1  i g h t  ( i n  t h e  pho tosyn the t i c  wavelengths) by d i r e c t  abso rp t i on  
thereby  reduc ing  t h e  l i g h t  a v a i l a b l e  f o r  a l g a l  photosynthes is .  As l i g h t  
abso rp t i on  i s  r a p i d  w i t h i n  upper l a y e r s  o f  t h e  l a k e  (mean e x t i n c t i o n  
c o e f f i c i e n t  equa l l ed  1.13/m), t he  e p i l  imnion q u i c k l y  warms a f t e r  i c e - o u t  
i n  t h e  s p r i n g  and t h e r e a f t e r  Bakewell Lake e x h i b i t s  a  c l a s s i c  thermal 
s t r u c t u r e .  The upper e p i l i m n e t i c  l a y e r  r a p i d l y  heats  fo rming  a  sha l low 
d i s t i n c t  s t r a tum w i t h  t h e  thermocl i n e  becoming s t r o n g l y  developed between 
4 and 5 meters. Below t h i s  depth, hypo1 i m n e t i c  water  remains a t  4°C as a 
r e s u l t  o f  t h e  r a p i d  warming and wind generated m ix i ng  o f  o n l y  t h e  upper few 
meters of  t h e  wate r  column. 

As a  consequence o f  bo th  r a p i d  hea t i ng  and sha l low wind mix ing ,  t h e  
euphot i c  zone (EZ) and t h e  thermoc l ine  (TC) depths (Table 1 )  a re  c l o s e l y  
a l i g n e d  d u r i n g  t h e  summer per iod .  The EZ:TC r a t i o  ranges f rom 1.1:1 t o  
1.3:1 d u r i n g  t h e  summer, and of course, decreased o r  inc reased  p r i m a r i l y  as 
a  f unc t i on  o f  temperature changes t h a t  occurred d u r i n g  t h e  s p r i n g  and f a l l  
pe r iods  . 
The euphot i c  zone depth i n  Badger Lake was found t o  be cons ide rab l y  g r e a t e r  
than t h a t  of Bakewell Lake. The depth of t he  p h o t i c  zone extended from 10 



Table 1. Depth of the euphotic zone (EZ) and the thermocline (TC); 
and the euphotic zone to thermocline depth ratios for both 
Bakewell Lake in 1981 and 1982, and for Badger Lake in 
1982. 

Bakewell Lake 
A R ,, Y 

Date Depth (m) Ratio Depth (m) Ratio 
1981 E Z TC EZ:TC E Z TC EZ:TC 

15 May 4.1 1 .O* 4.1:l 4.8 1 .O* 4.8:l 
23 Jul 4.2 3.5 1.2:l 4.4 3.5 1.3:1 
20 Aug 4.3 4.0 1.1 :I 4.2 4.0 1.1 :1 
8 Oct 3.5 10.0 0.3:1 - - - 

28 May 3.8 1 .O* 3.8:l 3.9 1 .O* 3.9:1 
24 Jun 5.3 4.5 1.2:1 5.4 4.5 1.2:l 
29 Jul 4.9 4.0 1.2:l 5.5 5.0 1.1 :1 
24 Aug - Unavailable - - Unavailable - 

Badger Lake 

24 Jul 9.9 7.0 1.4 
04 Aug 13.4 7.0 2.0 
24 Aug - Unavailable - 

*Thermal structure poorly defined 



t o  nearly 14 m compared t o  only 4 t o  5 m in Bakewell Lake. The increased 
c l a r i t y  of the water ( i  .e .  , a lack of yellow organic ac ids )  i s  v i s ib ly  
apparent in Badger Lake. As a consequence of deeper l i g h t  penetration and 
the slower heating of the surface s t r a t a ,  the thermocline formed a t  7 m o r  
nearly double the thermocline depth found fo r  Bakewell Lake. Thus, the 
euphotic zone depth was u p  t o  double the depth of the epilimnion (EZ:TC 
equalled 1 .4: l  and 2 .0 : l )  i . e . ,  algae could grow and reproduce a t  depths 
we1 1 within the hypol imnion. 

Temperatures within the epilimnion reached above 23°C in Bakewell Lake, and 
were somewhat lower in Badger reaching a maximum of 19°C. However, 
hypolimnetic temperatures remained f a i r l y  constant in both ranging from 
3.6"C t o  4.6"C in Bakewell, and from 3.1 t o  4.4"C in Badger Lake. Finally,  
deep water heating during both the spring or f a l l  turnover periods was 
l imi ted ' to  depths <20m. That i s ,  approximately 4°C water was present year 
round a t  depths g rea te r  than 20 m. 

Dissolved Gases 

Dissolved oxygen levels  in Bakewell Lake varied seasonally, b u t  usually the 
increases and/or decreases found i n  oxygen concentrations were not biolog- 
i c a l l y  mediated and merely ref lec ted a decrease and/or increase respectively 
i n  temperature. For example, in the s r ing of 1981, dissolved oxygen levels  
t o  as  deep as 50 m equalled 12.5 mg L-f  ( i  . e . ,  >95% sa tu ra ted) .  However, 
in the spr in  of 1982, dissolved oxygen levels  were observed t o  have dropped 
t o  5.8 mg L - 7  ( a t  30 m) o r  t o  levels  <44% satura t ion.  Evidently, during the  
pro1 onged i ce-covered period of winter (1 981 -1 982) , dissolved oxygen 1 eve1 s 
f e l l  in the deeper layers.  After  ice-out ,  the  lake quickly warmed a t  the 
surface leaving the deeper layers uncirculated and thus,  s t i l l  p a r t i a l l y  
devoid of oxygen. 

Unlike Bakewell Lake, Badger Lake appeared t o  have dissolved oxygen levels  
consis tent ly  g rea te r  than 90% satura t ion on a l l  dates and a t  a l l  depths 
sampl ed. 

Water Qua1 i t y  Parameters 

Bakewell Lake i s  an extremely soft-water system exhibit ing conductivity 
values ranging from 6-9 pmho/cm2 (Table 2 )  within both the  ep i l  imnion and 
the hypol imnion. Such d i l u t e  waters a re  typical  of Southeast Alaska and 
a r e  caused by a combination of small,  geologically new, steep-sided 
watersheds ; and heavy precipi ta t ion which causes rapid f l  ushing of the  1 ake. 
Like Bakewell Lake, Badger i s  a l so  an extremely soft-water system with 
conductivity values ranging from 11 t o  13 pmho/cm2 (Table 2 ) .  Both lake 
systems have very low reserves of inorganic carbon (present  as the 
bicarbonate ion) as  a l ka l i n i t y  values ranged from 1-4 mg ~ - 1  (as  CaC03). 
In addi t ion,  pH values ranged from 5.97 t o  5.82 in Badger, and were even 
s l i g h t l y  lower in  Bakewell, i . e . ,  4.85 t o  5.37. As an as ide ,  both these 
systems would be very susceptable t o  acid-rain poisoning, therefore ,  any 
new indust r ia l  development in the area should be c losely  checked as t o  
i t s  emissions p rof i l e .  



Tab le  2. Water q u a l i t y  parameters f o r  b o t h  Bakewell  and Badger l a k e s  f o r  1981 and 1982. Values a r e  mean c o n c e n t r a t i o n s  f o l l o w e d  by t h e  number o f  
o b s e r v a t i o n s  i n  paren thes is .  The e p i l i m n e t i c  zone was c h a r a c t e r i z e d  by s a m p l i n g  a t  dep ths  o f  2-4 mete rs ,  where t h e  h y p o l i m n e t i c  zone 
was sampled a t  depths of  25-50 meters depending upon thermal  s t r u c t u r e .  

Lake R a k ~ w ~ 1 1  l a k ~  Radner 1 A ~ P  - - . - . . - . . - - . . - --- - .  --.,- 

T < + ~ + i n n  
May-October 1981 May-August 1982 June-August 1982 

A R A R A -., - -- 
paramete- Depth E p i l i m n i o n  Hypol imnion E p i l  imn ion  ~ ~ p o l  imn ion  - E p i l  i m n i o n  Hypol imn ion  E p i l i m n i o n  Hypol i m n i o n  E p i l i m n i o n  Hypol imnion 

C o n d u c t i v i Y  at 25DC 
(prnho/cm 

pH1 
A l k a l i n i t y  

(mg L-1 as CaC03) 
Calc ium (mg L-1)  
Magnesium (mg L-1)  
I r o n  (ug L:'! 
Reac t i ve  S ~ l i c o n  

(pg L-1 as s i )  
T o t a l  Phosphorus 

(pg ~ 1 1  as P) 
T o t a l  F i  1  t e r a b l e  

Phosphorus 
(pg L-1 as P) 

F i  1  t e r a b l e  R e a c t i v e  
Phosphorus 
(ug L-1 as P )  

Ammon i urn 
(pg L-1 as N) 

N i t r a t e  + N i t r i t e  
(pg L-1 as N) 

l A c i d  r a d i c a l  c o n c e n t r a t i o n s  averaged t o  g i v e  mean n e g a t i v e  l o g  values.  



Calcium and magnesium l e v e l s  a re  a l so  very low i n  both systems o f ten  
reaching undetectable concentrat ions (GO. 3  mg L-1 ) . Apparent concent ra t ions  
o f  ca lc ium i n  Bakewell Lake (1981) ranged from 1  t o  3  mg L-1 however, i n  
both Badger and Bakewell i n  1982, ca lc ium and magnesium concentrat ions 
were reduced t o  a t  o r  below 0.5 mg L-1 . Di f ferences between hypol imne t i c  
and e p i l i m n e t i c  s t r a t a  were n o t  apparant f o r  both Bakewell and Badger 
Lakes i . e . ,  concentrat ions o f  ca lc ium and magnesium were v i r t u a l l y  
equ iva len t .  

However, u n l i k e  ca lc ium and magnesium leve l s ,  i r o n  concentrat ions va r i ed  
cons iderab ly  between these two systems. The c lear -water  system (Badger) 
conta ined between 17 and 19 pg L-1 o f  i r o n  i n  t he  ep i l imn ion  and hypol imnion 
r e s p e c t i v e l y .  Bakewell, on the  o the r  hand, conta ined from 90-506 pg L-1 of 
i r o n  w i t h  t he  ep i l imn ion  and hypol imnion showing d i s t i n c t  d i f ferences 
(F igure  3) .  That  i s ,  i r o n  l e v e l s  i n  t h e  hypol imnion were as much as 4 t o  5  
f o l d  those found i n  t he  ep i l imn ion .  Not o n l y  were i r o n  concentrat ions 
d i f f e r e n t  between s t r a t a ,  b u t  i r o n  l e v e l s  a l s o  e x h i b i t e d  q u i t e  d i f f e r e n t  
seasonal pa t te rns  between years. For example, i n  1981 e p i l i m n e t i c  and 
hypo l imnet ic  i r o n  concentrat ions were equ iva len t  (approximately 100 pg L - ] )  
du r i ng  the  s p r i n g  ove r tu rn  ( i  .e. , May) through J u l y  per iod.  However, by 
August hypol imne t i c  i r o n  concentrat ions began t o  r i s e  whereas those i n  t he  
ep i  1  imni on remained a t  approximately 100 pg L-1. I n  1982, t he  t r e n d  was 
somewhat d i f f e r e n t .  That i s ,  t he  e p i l i m n e t i c  i r o n  concentrat ions remained 
a t  approx imate ly  100 pg L-1 as was observed i n  1981, b u t  hypo l imnet ic  i r o n  
concentrat ions rose immediately a f t e r  t h e  p a r t i a l  lake  ove r tu rn  i n  l a t e  May 
t o  l e v e l s  approaching 500 pg L-1. 

N u t r i e n t  P r o f i l e s  

The pr imary n u t r i e n t s  s tud ied  i nc lude  the  a l g a l  n u t r i e n t s ;  phosphorus, 
n i t r ogen ,  and s i l i c o n  (Table 2 ) .  I n  t he  Bakewell system, t o t a l  phosphorus 
(as P  l e v e l s  ranged from 5.8 t o  6.8 pg L-1 i n  1981, and from 4.5 t o  5.8 1 pg L- i n  1982. P a r t i c u l a t e  phosphorus w i t h i n  t he  e  i l i m n i o n  ranged from 
1.8 t o  2.5 pg L-1 i n  1981, and from 1.8 t o  1.7 pg L-7 i n  1982. F i l t e r a b l e  
r e a c t i v e  phosphorus was always de tec tab le  i n  Bakewell w i t h i n  both t h e  
e p i l  imnion and h  po l  imnion rang ing  from 2.2 t o  3.2 pg L-1 i n  1981, and from r 1.8 t o  2.7 pg L- i n  1982. I n  general ,  e p i l i m n e t i c  values were l e s s  than 
those found f o r  t he  hypol imnion a l though the  absolute d i f f e rences  were s l i g h t .  

Inorgan ic  n i t r o g e n  values were c o n s i s t e n t l y  low i n  both years f o r  t he  
Bakewell system. In  a d d i t i o n ,  t h e  ep i l imn ion  conta ined l e s s  n i t r o g e n  than 
d i d  t he  hypol imnion. N i t r a t e  + n i t r i t e  l e v e l s  ranged from 1  t o  4 pg L-1 
(as N )  i n  t he  ep i l imn ion  i n  1981, and from 2 t o  3  pg L-1 i n  1982. During 
the  summer sampling per iod,  n i t r a t e  + n i t r i t e  l e v e l s  w i t h i n  t he  ep i l imn ion  
were o f ten  undetectable and ammonium l e v e l s  were extremely low. I n  
con t ras t ,  t he  hypol imnion conta ined de tec tab le  concentrat ions o f  both 
species throughout the  sampling per iod .  For example, i n  1981 hypo l imnet ic  
n i t r a t e  + n i t r i t e  ranged from 19 t o  23 pg L-1, and i n  1982 ranged f rom 21 
t o  30 p g  L-1. 

React ive s i l i c o n  (as S i  ) l e v e l s  showed much the  same t r e n d  as d i d  r e a c t i v e  
phosphorus i .e . ,  gene ra l l y  showing a  s l i g h t  depression i n  t h e  ep i l imn ion  
over  t h a t  found f o r  t he  hypolimnion. Again, t he  d i f fe rences  were smal l .  





Reactive s i l i con  was moderately low in the Bakewell system ranging from 571 
t o  685 pg L-1 in 1981, and from 592 t o  682 pg L-1 in 1982. 

Badger Lake exhibited t o t a l  phosphorus levels  of 2.6 pg L-1 in the 
epilimnion, and 3.1 pg L-1 in the hypolimnion (Table 2) .  In general ,  t o t a l  
phosphorus values were l e s s  than those found f o r  Bakewell Lake (4.5 t o  5.8 
pg L-1 ) Fi 1 t e rab le  react ive  phosphorus l eve l s  were a l so  low ranging from 
1.4 pg L-1 (epilimnion) t o  1 .5  pg L-]  (hypolimnion). 

Inorganic nitrogen levels  within Badger Lake were always detectable  in both 
the epi 1 imnion and the hypol imnion, a1 though the l eve l s  were extremely 1 ow in 
the epilimnion especia l ly  in regard t o  n i t r a t e  + n i t r i t e  l eve l s .  Nitrate + 
n i t r i t e  averaged j u s t  5 pg L-1 (as  N )  i n  the epilimnion, b u t  increased t o  
34 ug L-1 in the hypol imnion. Ammonium leve l s  were (1 ike Bakewell Lake) 
very low with only 5 and 3 pg L-1 recovered respectively in the 
ep i l  imnion and hypol imnion. 

Reactive s i l i con  (as  S i )  l eve l s  within Badger Lake were v i r t ua l l y  the same 
fo r  both s t r a t a  averaging 858 pg L-1 i n  the ep i l  imnion, and 845 pg L-1 in 
the hypolimnion. Si l icon concentrations i n  both s t r a t a  were from 100 t o  
200 pg ~ - 1  higher than react ive  s i l i con  l eve l s  found in Bakewell Lake. 

Nutrient Ratios 

The r a t i o  of Si :N:P  [ i  . e . ,  react ive  s i l i con :  inorganic nitrogen: t o t a l  
phosphorus (by atoms)] varied l i t t l e  in  Bakewell o r  Badger Lakes by season 
within a defined stratum. The prevalent fea tu re  was f o r  the  Si:TP r a t i o  t o  
be near o r  above 100:l in the Bakewell system, and 2300:l in Badger Lake. 
In addi t ion,  there  was very l i t t l e  consis tent  difference found in the  Si:TP 
r a t i o  between the epilimnion and the hypolimnion. In con t ras t ,  N:TP r a t i o s  
(by atoms) ranged from 2:l t o  7:l i n  the epilimnion of Bakewell Lake ( i n  
both years)  compared t o  12:l t o  17:l in the hypolimnion. For Badger Lake, 
the N:TP r a t i o  ranged from 7:l t o  14:l in the epilimnion, and from 24:l t o  
29:l in the hypol imnion. In general,  i t  appears t h a t  f o r  every atom of 
t o t a l  phosphorus ( o r  react ive  phosphorus) present in Bakewell Lake there 
ex i s t s  l e s s  s i l i con  and nitrogen when compared t o  Badger Lake. This could 
have important consequences t o  the algal  f l o r a  found in each system, and 
may cause s i gn i f i c an t  differences t o  a r i s e  between the upper (A) and lower 
(B) s t a t i ons  in Bakewell Lake. 

Algal Standing Crop 

The biomass of the  phytoplankton was estimated by chlorophyll a (chl a )  
analys is  a t  three  depths: 1 ni, mid-euphotic zone ( M E ) ,  and the d e p t h t o  
which 1 %  of subsurface l i g h t  penetrated ( L E )  (Table 3 ) .  The amounts of 
chl a recovered a t  Stat ion A in 1981 showed a uniform depth d i s t r ibu t ion  
in ea r ly  (May) and in the l a t e  f a l l  (October) samples. Biomass levels  a t  
both dates were extremely low with mean values of 0.12 and 0.11 pg L-1 
during May and October respectively.  However, during the summer period of 
July and August chl a 1 eve1 s reached 1.05 pg L-1 and averaged 0.85 and 
0.78 pg L-1 respectively.  In addi t ion,  the depth d i s t r ibu t ions  were f a r  
from uniform with maximum chl - a levels  found in the upper s t r a t a .  



Table 3. Depth d i s t r i b u t i o n s  o f  c h l o r o p h y l l  a (pg L-1) found i n  
Bakewell Lake f o r  1981 and 1982, and i n  Badger Lake i n  
1982. 

Bakewell Lake 
- 

Date ~ e p t h  Depth 
1981 1 m ME* LE** 1 m ME* LE** 

15 May 0.17 0.08 0.12 0.10 0.08 0.04 
23 Ju l  1.05 0.59 0.92 0.26 1.12 0.79 
20 Aug 1.03 1.03 0.29 0.39 0.48 0.53 
08 Oct 0.08 0.14 0.10 - - - - - - 

28 May 0.63 0.43 0.43 0.48 0.39 0.29 
24 Jun 0.34 0.10 0.39 0.24 0.34 0.68 
29 J u l  0.19 0.05 0.48 0.24 0.14 0.43 
24 Aug 0.45 0.29 0.29 0.58 0.24 0.34 

Badger Lake 
A 

24 J u l  0.10 0.24 0.34 
04 Aug 0.10 0.34 0.48 
24 Aug 0.14 0.29 0.29 

* M i  d-euphot i  c zone (ME) 
**Lower l i m i t  o f  t he  euphot ic  zone (LE)  as de f ined  by 1% o f  subsurface 

l i g h t  penet ra t ion .  



Chl a l e v e l s  a t  S t a t i o n  B were on the  average l e s s  than those found a t  
StatTon A, however, t h e  h ighes t  s i n g l e  ch l  a conten t  (1.12 pg L-1 ) was 
found i n  J u l y  a t  S t a t i o n  B. 

I n  1982, c h l  & l e v e l s  and depth d i s t r i b u t i o n s  were very much d i f f e r e n t  than 
those found i n  1981. S p e c i f i c a l l y ,  c h l  a  l e v e l s  i n  the  s p r i n g  were h igher  
(0.50 pg L-1 a t  S t a t i o n  A and 0.39 pg L-T a t  S t a t i o n  B) than those found 
i n  1981 (0.12 pg L-1 and 0.07 pg L-1 a t  S ta t i ons  A and B r e s p e c t i v e l y ) .  
However, f o r  t he  remainder o f  t he  summer growing season, June through 
August, c h l  a  l e v e l s  were reduced t o  almost o n e - t h i r d  t he  1981 l e v e l s  a t  
bo th  s t a t i o n s .  I n  add i t i on ,  the  c h l  - a v e r t i c a l  d i s t r i b u t i o n s  were more 
uniform. 

I n  Badger Lake, ch l  a  l e v e l s  were very s i m i l a r  t o  those found i n  Bakewell 
Lake (1982 as June through August l e v e l s  equa l led  0.26 pg L-1 compared t o  
0.29 pg L-1 and 0.36 pg L-1 a t  S ta t i ons  A and B r e s p e c t i v e l y  i n  Bakewell 
Lake. However, the  v e r t i c a l  d i s t r i b u t i o n  was much d i f f e r e n t .  I n  Badger, 
h ighe r  l e v e l s  o f  c h l  a  were found i n  t he  lower depths compared t o  t he  
sur face  s t r a t a .    his-was j u s t  opposi te  t o  t h e  p a t t e r n  found f o r  Bakewell 
i n  1981, and was d i f f e r e n t  compared t o  Bakewell i n  1982 when c h l  l e v e l s  
a t  t h e  th ree  depths were very uniform. 

Zooplankton 

The numer i ca l l y  dominant organism found i n  t he  zooplankton community o f  
Bakewell Lake du r i ng  both years o f  s tudy was the  copepod c y c l o p s  
b i s c u s p i d a t u s  t homas i  which was numer i ca l l y  f o l l owed  by Bosmina 
l o n q e r o s t r i s ,  Holopedium q i b b  erum,  and Daphnia l o n q i r e m i s  (Tab1 e 4)  . 
C y c l o p s  b i s c u s p i d a t u s  t homas i  represented from 33% t o  87% of t h e  zoo- 
p lank ton  community i n  1981, and from 66% t o  98% o f  t he  zooplankton i n  1982. 
I n  con t ras t ,  Daphnia l o n g i r e m i s  represented from 8% t o  22% o f  t he  macro- 
zooplankton i n  1981, and from <I % t o  24% i n  1982 w i t h  Bosmina l o n q i r o s t r i s  
represent ing  f rom 4% t o  50% o f  the  zooplankton i n  1981, and from (1% t o  
8% i n  1982. F i n a l l y ,  Holopedium q ibberum represented 1% t o  4% o f  t he  
zooplankton community du r i ng  1981, which increased i n  1982 t o  range f rom 
0% t o  13%. The l a t t e r  cladocerans were n o t  o n l y  l ess  numerous, bu t  v a r i e d  
seasonal ly  i n  abundance pa t te rns .  For example, Daphnia l o n q i r e m i s  and 
Holopediurn gibb erum peaked e a r l  i e r  i n  t he  year  (du r i ng  t h e  July-August 
pe r i od )  whereas ~ o s m i n a  l o n q e r o s t r i s  apparant ly  peaked i n  numbers i n  t he  
l a t e  f a1  l ~ e a r l y  w in te r .  

Zooplankton d e n s i t i e s  i n  Bakewell Lake (exc lud ing  r o t i  f e r s  and copepod 
naupl i i )  ranged from 49,134/m2 t o  98,446/m2 i n  1981 a t  S t a t i o n  A, and from 
30,111/m2 t o  244,126/m2 a t  t he  same S t a t i o n  i n  1982 (Table 4). Thus, 
o v e r a l l  dens i t y  comparisons would i n d i c a t e  a rough doubl i n g  i n  zooplankton 
standing crop from 1981 t o  1982 w i t h  most o f  t he  increase belonging t o  t he  
c y c l o p s  b i c u s p i d a t u s  t homas i  populat ion.  I n  a d d i t i o n  t o  t he  observed 
seasonal and y e a r l y  v a r i a t i o n s ,  s t a t i o n  t o  s t a t i o n  d i f f e rences  were j u s t  as 
ev ident .  For example, S t a t i o n  A (upper end o f  the  l a k e )  conta ined 
c o n s i s t e n t l y  g rea te r  numbers o f  zooplankton on a l l  dates sampled than d i d  
S t a t i o n  B. D i f fe rences  a t  t imes reached two t o  th ree  f o l d  which were 
cons i s ten t  over t he  e n t i r e  range of species found. I n  add i t i on ,  Daphnia 
r o s e a  was never found a t  S t a t i o n  B, b u t  was observed a t  S t a t i o n  A, a l b e i t  
i n  very low dens i t i es .  The l a t t e r  p a t t e r n  o f  occurrence suggests t h a t  t h i s  
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par t i cu la r  species could be a refugee from Badger Lake where i t s  dens i t i e s  
were found t o  be considerably higher. 

In Badger Lake, the organisms comprising the zooplankton community were the  
same as t ha t  found in Bakewell, y e t  the r e l a t i ve  composition was much 
d i f fe ren t .  F i r s t ,  Daphnia l o n g i r e m i s  was poorly represented, i t s  place 
being taken by the s l i g h t l y  more numerous and l a rger  (body-size) Daphnia 
r o s e a .  Second, Bosmina l o n g i r o s t r i s  populations showed increased numbers 
ranging from 6% t o  22% of the community. Third, Holopedium gibberum 
became a more dominant member of the zooplankton community with dens i t i e s  
ranging from 17% t o  37% of the t o t a l  population. Yet, 1 i  ke Bakewell, the 
dominant zooplankton component s t i l l  consisted of c y c l o p s  b i c u s p i d a t u s  
t h o m a s i .  However, the cyclopoid component represented only 49% to  74% of 
the community which was considerably be1 ow i t s  representat ion in Bakewell 
f o r  the same time period. 

The t o t a l  number of macro-zooplankton found in Badger Lake from June through 
August 1982 ranged from 104,000/m2 t o  119,000/m2. This compared t o  a range 
of 92,000/m2 t o  152,000/m2 a t  Sta t ion B y  and from 244,000/m2 t o  222,000/m2 a t  
Sta t ion A in Bakewell Lake during the same time in te rva l .  

The s h i f t  in r e l a t i ve  community composition of the zooplankton between 
these two lakes was accompanied by a d i f ference in mean body-size (Figure 4 ) .  
In a l l  cases ,  within species body-size was smaller f o r  the  Bakewell repre-  
sen ta t ive  compared t o  the same organism found in Badger Lake on comparable 
sampling dates.  Spec i f i ca l ly ,  mature copepods c y c l o p s  b i c u s p i d a t u s  t h o m a s i  
measured 0.40 t o  0.44 mm on 24 June in Bakewell Lake whereas those in 
Badger Lake on the same date averaged from 0.65 t o  0.69 mm. Further i t  was 
not un t i l  24 August t ha t  the cyclopoid copepods in Bakewell reached 
the same s i z e  as those found in Badger Lake on 24 June. Likewise, 
representat ives from the species ~ o l o p e d i u m  gibberum were consis tent ly  of 
g rea te r  s i z e  i n  Badger Lake compared t o  those in Bakwell Lake. In f a c t ,  on 
24 August, Holopedium had a mean s i z e  of between 0.44 and 0.49 mm in 
Bakewell Lake but were nearly double in s i z e  (0.85 t o  0.89 mm) a t  the  same 
time in Badger Lake. The trend of larger  body-sized individuals being 
found in Badger Lake not only applied t o  c y c l o p s  b i c u s p i d a t u s  t h o m a s i ,  
Bosmina l o n g i r o s t r i s ,  and Holopedium g ibberum,  b u t  t o  the r a r e r  organisms 
as well e .g . ,  Diaptomus S p . ,  Daphnia l o n y i r e m i s ,  and Daphnia r o s e a .  
Finally,  f o r  both the Holopedium and Bosmina populations not only were the  
mean body-sizes greater  in Badger Lake compared t o  Bakewell, b u t  t h e i r  
r e l a t i ve  population dens i t i e s  were a l so  greater .  

DISCUSSION 

Both Bakewell and Badger lakes a r e  unproductive (01 igotrophic)  , extremely 
"soft-water" systems. However, t h i s  does not imply t h a t  both systems a re  
incapable of rearing salmonid f r y  and producing salmon smolts. To the 
contrary,  both lakes have excel lent  potent ia ls  t o  rea r  juvenile salmonids. 
This conclusion i s  based upon the combined physical,  chemical, and biological 
fea tures  of each system. 
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Bakewell Lake i s  a brown-water system with an acid pH, and a shallow 
euphotic zone. Thermal s t ra t i f ica t ion  sets  in early and i s  strongly 
developed throughout the summer growing season. As a consequence of the 
thermal heating of just  the upper stratum, temperatures in Bakewell Lake 
can exceed 23"C, and in f ac t ,  may approach 25°C during a sunny calm period. 
This has the general e f fec t  of increasing biological production, yet may 
work to  exclude the rearing sockeye fry from the upper s t r a t a  as 24°C has 
been described as a lethal temperature for  salmon fry (Scott and Crossman 
1973). In addition, sockeye fry have been reported to  have the greatest  
food conversion efficiencies a t  9" to  13°C (Foerster 1968), and seem to 
prefer temperatures in the 1 2  to  14OC range. For example, Goodlad e t  a1 . 
(1974) found tha t  within a l l  lakes studied, sockeye fry and fingerlings 
were rarely found in temperatures exceeding 15°C. In addition, the effect  
of the warm temperatures may be to  r e s t r i c t  the fry t o  only short excursions 
into the epilimnion and therefore the euphotic zone. Since sockeye fry are 
visual feeders (Eggers 1978) th i s  mechanism could l imit  the amount of time 
the fry could spend feeding. Thus, in brown water systems l ike Bakewell a 
population of rearing sockeye fry may be forced to  feed e i ther  a t  depths 
a t  or below the thermocline, or for  only short periods within the epilimnion 
leaving the epilimnion open for  longer periods of time to  other pelagic 
rearing fishes [e.g. three-spined stickleback ( ~ a s t e r o s t e u s  a c u l e a t u s ) ]  
tha t  are more tolerant of warmer temperatures (Cannon 1981). 

Another consequence of the rapid s t ra t i f ica t ion  of brown water systems i s  
the tendency of such systems to skip an overturn period in the spring or to  
overturn part ia l ly .  This was observed in the spring of 1982 for  Bakewell 
Lake, which had the effect  of changing the water quality of the hypolimnion 
(Figure 3 ) .  I n  particular,  iron levels rose when dissolved oxygen levels 
became depressed. Had such a problem become aggravated by a prolonged 
winter the hypolimnion might well have become a less  suitable environment 
for  rearing salmonids. 

In contrast ,  Badger Lake also s t r a t i f i e d ,  b u t  i t s  epil imnetic volume i s  
larger than that  of Bakewell (per unit lake area) .  Consequently, the 
epilimnetic temperatures tended to be below 20°C ye t ,  a t  the same time, 
temperatures were found a t  times to  be greater than 15°C. In addition, the 
overall depth of Badger insures a large hypo l imne t i c -ep i l imne t i c  volume ra t io  
(unlike Bakewell Lake) which reduces the possibil i ty of any depletion in 
oxygen 1 eve1 s . 
Like the more obvious temperature and oxygen limitations on rearing fry 
dis t r ibut ions,  nutrient concentrations can also influence rearing conditions 
for  salmonid fry.  In Bakewell Lake, for  example, the epilimnetic concen- 
t ra t ions of nitrogen were extremely low during the growing season. A t  the 
same time, the concentrations of reactive phosphorus and reactive s i l icon 
were readily detectable, and more importantly were high relat ive to  the 
amount of nitrogen present. The level (and r a t i o )  of available nutrients 
within the euphotic zone (especially reactive s i  1 icon) suggested that  diatoms 
were n o t  an important or dominant member of the algal community. Thus, the 
algal f lora  may have consisted of mostly green and/or blue-green phyto- 
plankton. I t  has been suggested that  gelatinous green and colonial blue- 
green algae are ,  in general, less  available as food to zooplankton (Porter 
1975, 1977). Further, the nutrient ra t ios  suggested that  nitrogen could be 



act ing as a primary nutr ient  determining algal  species succession in 
Bakewell Lake. In essence then, both nu t r i en t  concentration ( T P )  and 
re1 a t i  ve r a t i o  data (N :TP)  indicate  t h a t  increasing the productive 
potential  of Bakewell Lake f o r  f i s h  food organisms may involve the addit ion 
of inorganic nitrogen. This would a c t  t o  decrease any competitive advantage 
f o r  nu t r i en t  uptake by green and blue-green algal  species by v i r tue  of 
increasing a low N:P  r a t i o  (Schindler 1977, Barica e t  a l .  1980). 

Nonetheless, both Bakewell and Badger Lakes presently produce populations 
of zooplankton, a primary forage food f o r  rearing salmonids. In 1982 (when 
comparative information i s  ava i l ab l e ) ,  the density of zooplankton in Badger 
Lake was s imi la r  t o  t ha t  found a t  Sta t ion B in Bakewell Lake (Table 4 ) .  
However, a t  Sta t ion A in Bakewell, the density of zooplankton was nearly 
double t h a t  of e i t h e r  Sta t ion B o r  Badger Lake. In addi t ion,  the  r e l a t i v e  
density of cladocerans versus copepods was higher in Badger compared t o  
Bakewell Lake, and the body-size of individual species was l a rger  in Badger 
compared t o  e i t h e r  s t a t i on  in  Bakewell Lake (Figure 4 ) .  So although the  
density of zooplankton may be somewhat l e s s  in Badger, the  qua l i ty  of zoo- 
plankton s t i l l  avai lable  t o  rearing f r y  may be higher in Badger. Thus, 
community cha r ac t e r i s t i c s  of the  zooplankton (species composition and body- 
s i z e )  a r e  j u s t  as important as  overall density in regards t o  supporting a 
population of rearing f ry .  

The a b i l i t y  of various species of salmonids t o  u t i l i z e  po ten t ia l ly  d i f f e r en t  
portions of the  zooplankton community has become increasingly documented 
(Figure 5 ) .  The d i e t  of rearing f r y  changes depending on seasonal var ia t ion 
i n  prey dens i t i e s ,  the increasing s i z e  of the rearing f i s h ,  the seasonal 
(and d i e l )  migration pat terns  f o r  both the  prey and predators; and the 
d i f f e r en t i a l  a b i l i t y  of the predator f i s h  t o  consume prey, each type of 
which has d i f f e r en t  predator escape abi 1 i  t i e s  (Drenner and McComas 1980). 
Empirically i t  has been found t ha t  sockeye f r y ,  f o r  example, can learn t o  
consume members of the  zooplankton community with a body-size 20.4 mm,  b u t  
in general ,  even within a mixed zooplankton community e l e c t  t o  e a t  large  
cl  adocerans (Jacni cke e t  a l e  1980, Rieman 1981 ) . However, when preferred 
large  body sized prey disappears ( o r  i s  consumed), the f r y  wil l  continue t o  
feed s i z e  se lec t ive ly  concentrating on the smaller components of the  
cl  adoceran community. If  the s i tua t ion  presents i t s e l f  and cl  adocerans a re  
e n t i r e l y  missing from the zooplankton community (g lac ia l  lakes)  o r  i f  the 
lake i s  t o  shallow t o  allow e f f ec t i ve  die l  migration of the zooplankton, 
sockeye wil l  feed e f fec t ive ly  on copepods including as a l a s t  r e so r t  the  
cyclopoid component. T h u s ,  sockeye f r y  a c t  a s  almost obl igate  planktivores. 
Coho salmon f r y  on the other hand can be described as more of a 
f a cu l t a t i ve  pl anktivore t h a t  wi 11 only feed on 1 arger zooplankton forms, 
and wil l  then switch t o  the benthic feeding mode i f  prey s i z e  in the 
pelagic zone drops below approximately 1.0 mm (Crone 1981 ) .  Similarly,  
from what l i t t l e  information we do have, chinook f r y  shut  down t h e i r  
pelagic feeding mode when zooplankton s izes  fa1 1 be1 ow 1.5 mm (Craddock 
e t  a1 . 1976). In addi t ion,  Tobias (1982) found the  stomachs of one year 
old chinook planted as f r y  in landlocked Scout Lake (Kenai Peninsula) t o  
be packed with the 1 i t t o r a l  zone zooplankton Eurycercus g l a c i a l i s  which 
ranged in s i z e  from 4 t o  6 mm. Heard (1982) reported t h a t  chinook f r y  
planted in Tranquil Lake (Baronof Island) ceased growth when the lake 





became devoid of zooplankton 21.5 mm. A t  t h i s  time, the chinook f ry  
(with empty stomachs) were found in the l i t t o r a l  zone undergoing intense 
competition with rearing coho f ry .  

I t  may well be t ha t  given the proper forage organisms a l l  three  species of 
salmon will  rear  in lakes. However, i t  appears t h a t  given a coho-sockeye 
mixture, the sockeye f r y  (by t h e i r  e f f i c i e n t  s i z e  se lec t ive  feeding) tend 
t o  outcompete coho f r y  fo r  zooplankton in the pelagic zone forcing the coho 
t o  the  l i t t o r a l  area .  .However, without the sockeye pressure, coho f r y  wil l  
r ea r  successfully on pelagic zooplankton (Crone 1981). In much the  same 
manner, a chinook-coho mixture may find the coho f r y  feeding pelagically 
forcing the chinook f r y  in to  the l i t t o r a l  zone. However, without the 
pressure from the coho stocks,  the chinook f r y  may we1 1 rear  pelagical l y ,  
but only i f  the  lake contains the proper s i z e  of and/or type forage food 
which appears t o  be large ,  slow moving cladocerans (Craddock e t  a1 . 1976, 
Tobias 1982). 

I t  must be s t ressed t ha t  i t  i s  d i f f i c u l t  t o  f ind large (21.5 mm) body-sized 
zooplankton in the pelagic zone of many Alaskan lakes primarily because 
the sockeye, coho and/or rainbow f r y  usually present se lec t ive ly  remove 
and/or par t i  t i  on out the  en t i  r e  s i z e  range zooplankton [e i ther  < or  21 . 5  mm 
in s i z e  (Figure 5) ] .  Thus, the only habi ta t  su i tab le  f o r  lake rearing 
chinook f r y  may be the pe lag ic / l i t to ra l  zone of ' f i s h l e s s '  lakes o r  the 
weedy l i t t o r a l  zones of lakes containing f i sh  such as Scout Lake. In both 
s i t ua t i ons ,  chinook f r y  may rear  successfully,  and may smolt i f  the ou t l e t  
a t t r a c t i on  i s  su f f i c i en t l y  strong. 

The apparent a b i l i t y  of these three species t o  rea r  successfully in lake 
i . e . ,  sockeye greater  than coho and coho greater  than chinook, may be in 
pa r t ,  do t o  t h e i r  d i f f e r en t i a l  a b i l i t y  t o  re ta in  zooplankton. That i s ,  g i l l  
rakers i n  sockeye are  more numerous and c loser  together than a r e  those in 
coho. L i  kewi s e ,  the  same re1 a t i  ve re1 a t i  onshi p holds f o r  coho versus chi nook 
i . e . ,  coho have a smaller g i l l  raker distance than do chinook. Thus, the  
a b i l i t y  of rearing f ry  t o  use increasingly smaller forage organisms in the 
zooplankton community, as indicated by g i l l  raker d i s t r ibu t ion ,  i s  sockeye 
greater  than coho and coho greater  than chinook. I t  i s  then suggested, 
t h a t  sockeye a r e  the dominate feeders i n  the pelagic zone, and t h a t  coho can 
perform equally well e i t h e r  in the pelagic zone (with the r ight-sized forage) 
or  in the l i t t o r a l  zone feeding on benthic invertebrates.  However, chinook 
f r y  appear t o  be very weak pelagic zone feeders (again t h i s  may change given 
the proper sized forage) ,  and thus, would perform be t t e r  in a lake rearing 
mode e i t h e r  in lakes with good l i t t o r a l  development or  i n  ' f i s h l e s s '  systems. 

Applying t h i s  empirical feeding ecology t o  Bakewell and Badger lakes,  i t  i s  
apparent from the zooplankton community composition (Tab1 e 4 )  and the 
spec i f ic  s izes  of the organisms present (Figure 4 )  t ha t  rearing f ry  forage 
organisms G1.0 a re  heavily represented whereas those organisms >1.0 mm a re  
under represented. Further, s ince the l i t t o r a l  areas in both systems are  
minimal (Figures 1 and 2 ) ,  i t  may well be t ha t  the rearing f ry  in both 
systems a re  re la t ive ly  dependent upon the pelagic zone f o r  forage. In t u r n ,  
within the pelagic zone, we have already detected a difference between the  
two systems in regard t o  both zooplankton community composition and the 
body-size of the  individual species. I t  must be kept in mind t ha t  the 



zooplankton community found in b o t h  lakes was that  remaining a f t e r  f ish 
predation had already taken place. Thus, the community composition and s ize 
of the zooplankton may well be dependent upon f ish predation, and in turn 
t e l l  us something about pre-existing predation pressure on each group. 

The existing predation pressure on Badger Lake zooplankton standing stock 
comes from coho and rainbow trout  f ry both of which have forage preferences 
for  larger body-sized zooplankton (Figure 5 ) .  However, the pressure on the 
Bakewell Lake zooplankton comes not only from coho and rainbow t rout ,  b u t  
includes stickleback and sockeye f ry  as well. I t  i s  not surprising then that  
the zooplankton of Badger are larger in body-size (Figure 4 )  given the 
absence of predation pressure on zooplankton of body-size approximately 
<l,O mm, i . e . ,  the presence of rainbow trout  and coho, b u t  the absence of 
sockeye and stickleback. In essence, the types of zooplankton and the i r  
re la t ive  body-size a l l  point t o  the conclusion that  Badger Lake i s  under 
ut i l ized as a rearing area when compared t o  Bakewell Lake. Further, in 
comparison to  other Alaskan lakes i t  appears that  the predation pressure on 
the zooplankton i s  not excessive in e i ther  lake, and thus both lakes can 
rear additional salmon fry.  



RECOMMENDATIONS 

1 )  Obtain adult sockeye and coho escapement estimates as well as smolt 
population characteristics (e.g. , length, weight, age). 

2 )  Increase access t o  Bakewell and, in particular,  Badger Lakes by 
anadromous salmon (sockeyelcoho) through rnodi f i ca t i  on/maintenance 
of the Bakewell Lake fishpass; and, i f  necessary, through improvement 
of the Bakewell-Badger connection. 

3)  Investigate the vertical  , horizontal , and seasonal distribution of 
rearing sockeye and coho f ry ,  particularly,  in relation to  that  of the 
three-spine stickleback. 

4) An increase in the production of f i sh  forage (zooplankton) can be 
achieved through the addition of a  high atom ra t io  (nitrogen:phosphorus) 
f e r t i l i z e r  principally in Badger Lake. 
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